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ABSTRACT
The prolificacy of human-robot interaction not only depends on a
robot’s ability to understand the intent and content of the human ut-
terance but also gets impacted by the automatic speech recognition
(ASR) system. Modern ASR can provide highly accurate (grammati-
cally and syntactically) translation. Yet, the general purpose ASR
often misses out on the semantics of the translation by incorrect
word prediction due to open-vocabulary modeling. ASR inaccuracy
can have significant repercussions as this can lead to a completely
different action by the robot in the real world. Can any prior knowl-
edge be helpful in such a scenario? In this work, we explore how
prior knowledge can be utilized in ASR decoding. Using our experi-
ments, we demonstrate how our system can significantly improve
ASR translation for robotic task instruction.
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1 INTRODUCTION
Spoken interaction is an important part of a system that aims to
enable a seamless way of instructing a robot [17, 19]. The recent
success of automatic speech recognition (ASR) systems [9] has
paved the way for realistic applications of ASR in human robot in-
teraction [11, 24]. However, the efficacy of an ASR system deployed
in a robot depends upon various factors [11] and its accuracy is
predominantly affected by noise, speaker’s accent and distance [15].
Research on ASR primarily focus on improving transcription ac-
curacy for general-purpose applications and existing ASR systems
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Figure 1: A scenario that shows the typical errors made by an
ASR model. Our approach improves the transcription using
relevant prior knowledge.

that are publicly available (commercial or otherwise), follow the
same general approach of modeling and training. Previous attempts
at improving speech recognition in robots primarily focus on ei-
ther improving the quality of the received speech signal or exploit
controllable acoustic characteristics [15].

This work aims to improve ASR accuracy, assuming the ASR is
utilized to transcribe natural language instructions given to a ro-
bot [20, 21]. Specifically, we introduce the problem of incorporating
domain-specific prior knowledge about objects in the environment
while performing inference with a pre-trained ASR model. We con-
sider three types of relational knowledge about objects - affordance,
physical attributes, and co-occurrence relations (spatial attributes).
Even though a particular instance of such knowledge would be
domain-specific, the knowledge types are common to human-robot
interaction that involves natural language [2, 10, 12, 22].

Figure 1 illustrates a scenario where a robot takes a spoken
instruction1, and transcribe it incorrectly by an ASR model. The
figure also shows a part of a KG, previously obtained by the robot,
and illustrates how a subset of the words in the instruction are
present as nodes in the KG, with the edges denoting the particular
type of the relationship. The existing works that include ASR in
robots, do not use such factual knowledge. We propose a method
to include the KG during ASR inference, which is based on an
approach to bias the beam search decoding process of ASR [8, 18, 25,
26]. However, we propose significant modifications to the biasing
method to make it suitable for biasing using a KG. We summarize
our main contributions as the following.

• To the best of our knowledge, this is the first work to utilize
semantic knowledge to improve ASR accuracy for robotics
application.

1The example is from a benchmark dataset, introduced in [23].
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• We propose a new biasing of ASR decoder using KG and
show significant improvements in speech recognition accu-
racy, when applied to transcribing spoken natural language
instructions.

2 RELATEDWORKS
Along with improving the general purpose ASR’s accuracy, the
existing works on improving speech recognition in robots mostly
focus on improving the acoustic characteristics of the speech sig-
nal, either by filtering noisy signals or training with noisy audio
data [15]. Somework also focus onminimizing the effects of noise in
speech directed towards a robot in motion. Kennedy et al. [7] exper-
iment with different microphone types, distance and speaker angles.
Some works have also explored controlling the robot’s behavior
(pausing, turn-taking, etc.) while interacting to improve ASR accu-
racy [13, 24]. While these prior works introduce approaches and
guidelines for effectively using ASR models in robots, there is little
progress in the area of using of semantic knowledge to improve ASR.
Oneata et al. [16] propose a method to perform speech recognition
using visual context in unmanned aerial vehicles. Their approach
combines features extracted from images using a recurrent neural
network during ASR inference. This prior visual information can be
considered as knowledge, but such knowledge is highly contextual
and may not always be relevant. Thus, their approach is unsuitable
to apply on a static, long-term semantic knowledge representation
such as a KG.

Recently, Pramanick et al. [18] proposed a shallow-fusion bi-
asing approach to improve ASR inference in robots, using visual
context captured from the robot’s camera. Their system also uses
contextual knowledge from vision and uses a shallow-fusion bi-
asing method to include the visual context during ASR inference.
Shallow fusion biasing has been effectively applied for improving
speech recognition accuracy for rare words and proper nouns, e.g.,
person names [5, 6, 8, 25, 26]. However, all these modifications of
the shallow-fusion biasing model use a static biasing vocabulary.
Although, [18] dynamically change the biasing vocabulary with the
robot’s movement, the dynamism is only per-inference, and the bias
vocabulary remains the same during the entire decoding process.
Such an approach cannot be applied optimally to this problem as
we are interested in dynamic biasing using partial facts (nodes)
from a KG, whose validity (i.e., being an edge in the KG) can only
be checked in the future time steps during decoding. We show that
the standard shallow-fusion biasing model with a static vocabulary
is sub-optimal in Section 5.3.

3 OVERVIEW
We follow a well-known approach of ASR modeling for open-
vocabulary speech recognition, named the CTC model [3]. Given a
speech input x, discretized into 𝑙 ′ time-steps, the CTC model pro-
duces a shorter sequence of the probability distribution of output
labels y that can be decoded to find the optimal output sequence,
i.e., the transcription,

𝑃 (y|x) =
𝑙∏

𝑖=1
𝑃 (𝑦𝑖 |x), 𝑙 < 𝑙 ′ . (1)

The output labels are usually chosen to be sub-word units, such as
Grapheme (characters) orWordPiece to perform open-vocabulary
speech recognition [1]. The equation above is usually approximated
using a beam search algorithm [3]. We propose a method to bias
the output of the beam search using prior knowledge. We propose
novel refinements to the existing method of introducing bias in ASR,
namely the shallow-fusion biasing model [25, 26]. In the following,
we describe our approach to obtain and represent the prior knowl-
edge and utilize the same to dynamically bias the beam search.
Figure 2 shows an outline of our approach with an example.

4 KNOWLEDGE-AIDED INFERENCE
Utilizing the prior knowledge in ASR decoding requires the knowl-
edge data to be represented pertinently. In this section, we describe
the knowledge representation before detailing our proposedmethod
of dynamic biasing using this prior knowledge.

4.1 Knowledge Representation
We represent the prior knowledge as a directed graph, subsequently
referred as a knowledge graph (KG) throughout the paper. Each
node in the KG is a unique natural language token and an edge
denotes a particular relationship between the tokens (as observed
by a data collector or an automated annotator). Thus a pair of con-
nected nodes represent a rational fact. As we do not assume an
unobserved relationship to be false, we do not consider negative
facts and ignore unobserved relationships altogether. In this work,
we demonstrate our approach by considering three binary relation-
ships corresponding to three distinct types of edges in the KG. We
summarize the edge types in Table 1. In our experiments, we extract
the KG from a pre-collected corpus of natural language instruc-
tions given to a robot, which involves executing various household
tasks [23]. However, such a KG can also be constructed from visual
observations during exploration [2, 22] or even defined manually.
In the following, we briefly describe the process of extracting the
KG from the corpus.

We primarily use a dependency parser2 to extract the relation-
ships from a given natural language instruction. In particular, we
convert the syntactic dependency graph of a given text into a set
of nodes and edges using a set of rules. Assuming an instruction
is made up of 𝑛 tokens, 𝐼 = 𝑡1:𝑛 , an edge type between a pair of
tokens (𝑡𝑖 , 𝑡 𝑗 ) is defined as following.

∀(𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝐼 ,



𝑡𝑖
𝑎𝑓 𝑓 𝑜𝑟𝑑𝑎𝑛𝑐𝑒
============⇒ 𝑡 𝑗 , if 𝑡𝑖

𝑑𝑜𝑏 𝑗
−−−−→ 𝑡 𝑗

𝑡𝑖
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒
=========⇒ 𝑡 𝑗 , if 𝑡𝑖

𝑎𝑚𝑜𝑑, 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑
−−−−−−−−−−−−−−−→ 𝑡 𝑗

𝑡𝑖
𝑐𝑜−𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒
===============⇒ 𝑡 𝑗 , if 𝑡𝑖

𝑎𝑓 𝑓 𝑜𝑟𝑑𝑎𝑛𝑐𝑒
============⇒ 𝑡𝑥

and 𝑡 𝑗
𝑝𝑜𝑏 𝑗
−−−−→ 𝑡𝑥 , 𝑡𝑥 ∈ 𝐼

where→ denotes a dependency relation in the given dependency
graph. The interpretation of the dependency relations used to con-
struct the rules can be found in [14]. We use a rule-based approach
for fast inference during beam search. However, it is also possible
to consider the edge extraction as a supervised learning problem.

2https://spacy.io/api/dependencyparser
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Figure 2: An overview of our approach that shows a hypothetical scenario of a beam search.

Table 1: Types of edges in the KG.

Edge-type Description Examples

Affordance Denotes that an action is
applicable on a object.

rinse → sponge,
cut → apple.

Attribute A physical or an abstract
property of an object.

small → lamp,
dining → table.

Co-occurrence A spatial relationship be-
tween two objects.

book → desk,
knife → table.

4.2 Dynamic Biasing
The beam search decoding algorithm attempts to find an approxi-
mately optimal solution for Eq. 1, i.e., finds the output label sequence
with the maximum likelihood under the approximation constraint
of keeping at most 𝑁 candidates (partial transcriptions) in each
iteration of the search. As shown in Figure 2, each iteration ex-
tends the current candidates with |𝐿 | sub-word labels from the ASR
network’s output, to generate 𝑁 × |𝐿 | candidates and scores them
according to the CTC objective [3],

𝑆𝑐 = 𝑙𝑜𝑔(𝑃𝐶𝑇𝐶 (𝑐 |x)) . (2)

It is common to use an n-gram language model by a log-linear inter-
polation with this score to improve the transcription accuracy [1, 3].
Shallow-fusion biasing further improves the chances of correctly
recognizing proper nouns, such as person names, which is usu-
ally under-represented in the standard ASR training datasets [6].
Shallow-fusion biasing methods generally boosts the scores of cer-
tain candidates. These candidates contain words or phrases from a
pre-set biasing vocabulary, assuming such a biasing vocabulary is
obtained before performing the beam search.

We observe that the KG can also be utilized to bias the beam
search and thus propose a method to do so. However, the standard

shallow fusion biasing model, if applied directly, i.e., by simply
treating the nodes of the entire KB as a large biasing vocabulary,
would result in sub-optimal decoding. Instead, we propose a dy-
namic biasing vocabulary generation method that predicts which
edges in the KG are relevant during a certain point in the beam
search, and restricts the biasing vocabulary to a subset of the nodes
in the KG. We use the dependency parsing graph of the top ranked
partial transcription to extract nodes that are part of the KG. Given
the current node (the last in the sequence), we generate a dynamic
biasing vocabulary by selecting the nodes in the KG that has an
edge with the current node. As illustrated using the example of
decoding the spoken instruction - ‘place soap on top of a toilet tank’
in Figure 2, given the partial transcription ‘place’, the dynamic bias-
ing vocabulary contains nodes having an edge with the place node.
Similarly, given the partial transcription ‘place soap’, the biasing
vocabulary changes to only the nodes having an edge with the
soap node, and so on. Our biasing model re-scores a candidate if
it finds an edge from the KG to be present the candidate. In other
words, an observed relationship between a pair of nodes in a partial
transcription, improves its score. We formally define the rescoring
function as,

R(𝑆𝑐 ) =
{
𝑆𝑐 + 𝜆 ∃𝑒 ∈ 𝑇 ′, 𝑒 ∈ 𝐾𝐺
𝑆𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where 𝑒 represents an edge, 𝑇 ′ represents a partially decoded tran-
scription, and 𝜆 is a hyper-parameter.

5 EVALUATION
In this section, we evaluate our dynamic biasing approach and
compare it with a couple of baseline systems.

5.1 Data
We perform experiments on a well-known dataset for evaluating
natural language instruction following the capabilities of a robot,
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Table 2: ASR performance compared to baseline models.

Model WER WERR

Wav2Vec2 13.05 —
Wav2Vec2 + LM 6.01 53.95
KG-Bias (dynamic) 5.47 58.08
KG-Bias (affordance) 5.54 57.55
KG-Bias (attribute) 5.68 56.48
KG-Bias (co-occurrence) 5.79 55.63
KG-Bias (static) 5.55 57.47

namely the Alfred dataset [23]. In particular, we use the textual
instructions in the train subset to build the KG. To evaluate speech
recognition, we first convert the valid-seen and valid-unseen subsets
into spoken instructions, using text-to-speech models. Specifically,
we use the gTTS3 model to generate spoken instructions from valid-
seen and use the Tacotron24 model for valid-unseen. We remove
any text that is present in the intersection of these three subsets.
Finally, we perform all hyper-parameter tuning on valid-seen and
evaluate on valid-unseen. This ensures that the evaluation is done
in a zero-shot manner, both in terms of unseen text and audio of an
unknown speaker. The valid-seen and the valid-unseen sets contain
789 and 749 spoken instructions, respectively.

5.2 Baselines & Ablation
We compare our approach with two baseline models. We also per-
form ablation experiments by restricting to a single edge type and
biasing using the entire KG.We performmodifications to a standard
CTC beam search implementation5 as described below.

• Wav2Vec2 - We use a pre-trained wav2vec2-base model [1].
• Wav2Vec2 + LM - We train a 3-gram language model (LM)
using KenLM [4] from the train set of Alfred [23]. Then we
combine this LM with Wav2Vec2 using a log-linear interpo-
lation.

• KG-Bias (affordance) - We perform shallow-fusion biasing
using only the affordance relationships in the KG.

• KG-Bias (attribute) - We perform biasing using only the
attribute relationships in the KG.

• KG-Bias (co-occurrence) - We perform biasing using only
the attribute relationships in the KG.

• KG-Bias (static) - We use a fixed biasing vocabulary for de-
coding all the instructions, obtained by including all the
nodes in the KG.

5.3 Results
We use a beam width of 100 for all the models. We find all other
optimal hyper-parameters using bayesian optimization6, performed
on the valid-seen set. We use the standard ASR evaluation metrics
– word error rate (WER) and relative reduction in WER, i.e., WERR.
The results are shown in Table 2.

3https://pypi.org/project/gTTS
4https://github.com/mozilla/TTS
5https://github.com/PaddlePaddle/PaddleSpeech
6https://ax.dev/docs/bayesopt.html

The basic ASR model without any modifications during infer-
ence, i.e., the standard Wav2Vec2 ASR system achieves around 13%
WER. This shows that even in noise-less audio and consistent pro-
nunciation (due to TTS models), general-purpose ASR models are
unable to accurately transcribe spoken instructions for a robotics
domain. We find a large improvement of approximately 54% relative
improvement by using a language model, which is trained from
in-domain textual examples.

Further, we find a substantial improvement by using our ap-
proach, i.e., shallow-fusion biasing using a pre-collected knowledge
graph, named as KG-Bias (dynamic) in Table 2. We obtain the lowest
WER of 5.47 and the highest relative reduction in WER compared
to the Wav2Vec2 model (around 58%). Compared to the LM inter-
polated baseline model, the relative reduction in WER is 9%.

In our first ablation experiment, we consider using only affor-
dance relationships in the KG to bias the inference, which results
in a slight increase in WER, 1.3% compared to using the entire KG.
However, we still find that the WER is lesser (better) than both the
standard and the LM-interpolated model. Similarly, we find that by
separately biasing using attribute and co-occurrence relationships,
the WER slightly increases by 3.7% and 5.5% relative to the full
KG model. Again, both of these relationships obtain better speech
recognition accuracy than the baselines. Interestingly, we find that
biasing using affordance relationships yields better results than
both attribute and co-occurrence relationships. The co-occurrence
relationships seem to have the least effect on biasing. However,
these observations could be specific to this dataset and due to the
vocabulary coverage of the KG. Finally, we also show the results
of static biasing using the full KG, which achieves a WER of 5.55.
However, this approach clearly results in sub-optimal decoding, as
we get almost similar and slightly better result from the KG-Bias
(affordance) model that doesn’t use the entire KG.

5.4 Limitations
Our experiments show promising results on the viability of using
prior knowledge represented as a KG. However, our approach is
naturally limited by the vocabulary coverage of the KG. In our
experiments, we extract the KG from the train split of Alfred, which
results in a high coverage. In the test set, 21% of the words are
OOVs, i.e., absent in the KG. Future works can explore other ways
of extracting the KG and inference methods to use a sparser KG.
Also, future experiments can include human speech instead of TTS
with variations in noise and accent.

6 CONCLUSION
In this paper, we present a method to improve an automatic speech
recognition system that is to be deployed in a robot. In particular,
we propose a novel way of utilizing a knowledge graph, contain-
ing information about relationships among objects, attributes, and
actions, during the inference using the speech recognition system.
We find promising results from experiments on a dataset of spoken
natural language instructions given to a robot. There are several
possibilities for extending this work, by improving the knowledge
representation and reasoning. Moreover, the general idea of biasing
inference using prior knowledge could be explored in other robotic
applications.
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