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Abstract— A robot as a companion or co-worker is not an
emerging concept anymore, but a reality. However, one of the
major barriers to this realization is the seamless interaction
with the robots that includes both explicit and implicit inter-
action. In this work, we assume a use-case where a human
and a robot together carry a heavy object in a co-habitat
(home or workplace/factory). Two human beings while doing
such a work understands each other without explicit (vocal)
interaction. To realize such behavior, the robot must understand
the fatigue state of the human co-worker to enable seamless
work experience and ensure safety. In this article, we present
DeFatigue, a non-intrusive fatigue state detection mechanism.
We assume that the robot’s hand is equipped with a force
sensor. Based on the change of force from the human side
while carrying the object, DeFatigue is able to determine the
fatigue state without instrumenting the human being with an
additional sensor (internally or externally). Moreover, it detects
the fatigues state on-the-fly (online) as well as it does not require
any (user-specific) training. Based on our experiments with 18
test subjects, fatigue state detection by DeFatigue overlaps with
the ground truth for 85.18% of the cases whereas it deviates
4.09 s (on average) for the remaining cases.

I. INTRODUCTION

Industrial revolution paved the way for using robots inside
various industry and assembly-line. Though the industrial
robots are becoming smarter in terms of performing more
delicate tasks, their usage is mostly limited where it is
unproductive or unsafe to employ human beings. Nowadays,
we see robots in different roles in our daily surroundings
ranges from tutor, guide, assistant, co-worker, etc. In this
work, we focus on a situation where a robot and a human
work as a co-worker to jointly carry a heavy object from one
place to another. According to a survey by Ray et al. [15],
moving heavy objects is among the top five tasks that people
expect from a household robot. A recent study also showed
that people collaborate best with a proactive robot that can
understand when to help a human [3]. Our goal is to enable
a worker robot to detect localized muscle fatigue of a human
co-worker while jointly carrying a heavy object. This way
the robot can act accordingly as the human co-worker gets
fatigued without explicit (vocal) communication. Also, the
human being herself may not be able to assess the muscle
fatigue state accurately. Thus, implicit fatigue detection will
ensure a safe and seamless interaction between a robot and a
human in a co-working environment be it home, workplace
or industrial setup.
Challenges. The goal of identifying localized muscle fatigue
is to avoid any form of injury by taking proactive action
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Fig. 1: Schematic diagram of DeFatigue.

and provide additional support to the human co-worker if
possible. Since muscle fatigue can happen within a short time
frame and the consequence can be severe, it is required to
identify on-the-go (online). As the time to get fatigue varies
significantly from person-to-person, the detection should be
people agnostic as well. Otherwise, the system needs to
be aware of each individual’s capability and physique. This
involves user-specific training and adaptation. Moreover, the
detection needs to be non-intrusive to be usable in practical
situations like work environment. There exists some effort
that can identify muscle fatigue, but they require the human
subject to wear some sensors [4], [9], [17]. Such a setup is
neither cost effective nor feasible. On the other hand, there
are video-based non-intrusive techniques that can identify
overall fatigue state and mostly utilize the drowsiness of
the subject [12], [18]. However, the applicability of these
techniques to identify localized muscle fatigue is limited.
Approach. In this article, we develop DeFatigue, a non-
intrusive mechanism that detects fatigue state of a human
co-worker during the working state without any explicit
interaction. As most of the robotic hands are equipped with
a force sensor(s), DeFatigue leverages on it to identify the
muscle fatigue state. A schematic diagram is shown in Fig. 1.
In a nutshell, it observes the change of force from the human
side, which is reflected in the force sensor at the robot side.
If force change is significant enough, it can be identified as
a change of fatigue state. However, mere force change based
classification can lead to a false positive, i.e., detection of a
fatigue state even if it is a small perturbation or hand tremor.
To avoid these situations, a threshold based approach can
be applied. However, a strict threshold can lead to miss-
detection, which may lead to an accident. Moreover, the
change of force is highly dependent on the physique of the
person. To overcome all these limitations, DeFatigue uses a
moving window based average force change and compare it
with initially applied force. This provides a generic approach
and mitigates the person-to-person variations.



TABLE I: Muscle fatigue is classified into four states with associated discomfort and tremor. [8]

Muscle Performance State I State II State III State IV
muscle discomfort tightness or slight

cramping
continuous cramping with
intermittent pain

continuous pain and desire
to abandon

unable to sustain ac-
tivity

hand tremor increase 138% 225% 300% 350%

Contributions. We experimented with 18 human subjects
and a robotic hand is emulated by a force sensor mounted on
a table corner. DeFatigue is able to detect the fatigue states
with very high accuracy when compared to the ground truth
(based on feedback from the human being during the data
collection). Specifically, our contributions are as follows.
• We develop an online, multi-stage muscle fatigue detection

mechanism that can be utilized by a robot co-worker while
jointly carrying a heavy object.

• The proposed method is non-intrusive and user agnostic.
Thus, it does not require the user to wear any sensor
(internally or externally) and it does not require any user-
specific training or adaptation.

• DeFatigue shows a very small number of miss/over-
detection across all the test cases. Moreover, DeFatigue
shows significantly less number of false negatives as
compared to false positives. This ensures the accuracy of
the system along with safety in the work environment.

II. RELATED WORK

In this section, we discuss some of the existing work on
fatigue detection. As muscle fatigue is not an instantaneous
event, we first discuss how to quantify fatigue states.

A. Fatigue quantification

The decision about fatigue is not a binary decision,
especially the muscle fatigue. Rather, it is a continuous
accumulation of lactic acid while the muscle is under stress.
When two human beings collaborate, they often understand
the fatigue state (may not be quantitative) of the other person
without explicit communication and act accordingly. Now, if
one of the co-workers is a robot, it is essential to assess the
fatigue state with every passing moment and decide whether
to persist on the job or not. In this work, we are interested
in detecting fatigue state of a person of unknown physical
strength, which varies significantly from person to person.
In order to be able to detect fatigue state of a person, it
needs to be quantified first. Though such a quantification
should be people agnostic, the time to reach muscle fatigue
generally depends upon several physiological properties of
the human body such as age, height, weight, gender, physical
wellness, etc. [6], often cumulatively termed as physical
strength. Moreover, there is also temporal variations of
physical strength for the same person, which makes the
detection problem more challenging.

Don B. Chaffin [8] defines localized muscle fatigue of
hand with respect to physiological properties of the human
body. Instead of a binary fatigue and non-fatigue classi-
fication, he defines a coarse-grained classification of four
states of fatigue (Table I). Though these four fatigue states

are described from a human perception point of view, by
correctly classifying these states, a robot can ensure safety
and provide a more accurate amount of support. Depending
upon the specific requirement, any of the four states can be
chosen as the final alert state to trade off safety with task
efficiency.

B. Fatigue detection

In the literature, the most popular and reliable non-invasive
methods of detecting localized muscle fatigue are based on
surface electromyography(sEMG) [1], [4]. Though sEMG
is declared as non-invasive, it is not a truly non-intrusive
sensing technique because it requires sensors to be physically
attached to the human body and thus defeats the purpose
of natural human-robot collaboration. Halim et al. [11] did
a study on analyzing muscle fatigue using mean power
frequency of sEMG in a manual lifting task of variable
heights. The study shows that out of a set of different muscles
(Biceps Brachii and Erector Spinae of left and right hands)
only a subset can get fatigued depending upon different
lifting heights and pose. So it can be argued that for a robot
to detect fatigue state of a human co-worker, all the muscles
involved in the work need to be attached with sensors leading
to even more invasiveness. Spyropoulos et al. [16] also did
a similar experiment of repetitive lifting task and assessed
fatigue of upper limb involving sEMG. Brown Brown et
al. [7] used 3D accelerometer attached to Biceps Brachii
along with sEMG to detect fatigue while subjects did a set
of repetitive exercises. In a very recent work by Peternel et
al. [14], wireless sEMG sensors were used to detect muscle
fatigue while performing collaborative tasks with a robot.
However, their system is able to detect only binary fatigue
states and it requires use-specific calibration. Also, because
of a binary detection, the robot only starts to adapt after the
fatigue state has been reached. Whereas a multi-stage fatigue
detection can help the robot adapt more pro-actively.

As an alternative, force sensors can be considered as a
fatigue measurement device which has been previously used
for drivers to assess their drowsiness and overall fatigue
level [10], [13]. Image and video processing techniques
with machine learning are also very popular and accurate
methodologies to assess driver’s fatigue level [12], [18].
However, we argue the image and video processing methods
are less applicable to detect localized muscle fatigue. On
the other hand, force sensor based techniques can be more
suitable for such a scenario since the data produced by a
forced sensor provides a more localized assessment of a
human body.

Chieh et al. [10] describe a methodology that employs
two force sensors on a steering wheel to collect driver’s grip



force data during simulated driving. The authors conclude
that fatigue detection is a complex matter and should not be
done by merely checking the threshold. This is because of the
fact that due to variations of physical strength, the change in
force during the transition to fatigue state will vary, making
the determination of the threshold infeasible. The collected
data is processed off-line to estimate the mean grip force
during alert state and fatigue state. With the estimated mean
values, the authors claim to detect the point of fatigue using
mean change detection algorithm called CUSUM, which is
a well-known statistical change-point detection algorithm.
However, the described method in [10] is offline as it
requires the estimated mean force corresponding to fatigue
state to be known a priori. Also, the authors haven’t discussed
the performance of the algorithm in terms of accuracy for
multiple subjects. Lee et al. [13] use an FSR-408 strip sensor
on the steering wheel to collect grip force data of a driver
during a simulated driving task to measure the subjective
sleepiness of the driver. They have taken an average dataset
from 31 participant’s data and used a statistical change
detection method called Repeated Measures ANOVA to report
a single fatigue state. However, they have not discussed
how the data varies with the participants. They also describe
offline detection and how to use ANOVA in an online setting
is not discussed. Bhardwaj et al. [5] conduct a similar
experiment with commercial tactile gloves which contains
multiple force sensors. Though the article deals with driver’s
discomfort and not directly with fatigue, still it shows that
force sensors can effectively capture the change in driver’s
physical properties related to fatigue.

To the best of our knowledge, none of the existing methods
that use force sensor is suitable for a robot co-worker to
detect multi-state localized muscle fatigue on-the-go. Though
the most popular methods use sEMG signals [2], [7], [14],
they require electrodes to be put on the person. Clearly,
such an invasive sensing method has very few use cases and
certainly won’t enable natural and implicit communication
in a human-robot co-working scenario.

III. SYSTEM REQUIREMENTS

If a person gets fatigued, continuing any exhaustive work,
such as carrying a heavy object can lead to an accident.
When a person uses only a body part, such as hand or leg
to do some work, lactic acid gets accumulated in the muscle
and leads to localized muscle fatigue. In such cases also,
continuing the work may lead to an accident, even though
the person may not be fully exhausted. The goal of this work
is not to identify the overall fatigue state of a human being,
but to determine the localized muscle fatigue state.

The idea is that a worker robot detects the fatigue state
of a human co-worker while jointly doing a work such that
precautions can be taken to ensure the safety. The proactive
action by the robot without any explicit communication from
the human not only avoids an accident, this would imitate
implicit communication between the human and the robot.

The goal of DeFatigue is not to achieve a binary fatigue
classification system as this may lead to a lower productivity

(in case of permissive detection) or higher accident probabil-
ity (in case of very strict detection). As a result, DeFatigue
classifies four fatigue state as described in Table I, which is
a better quantitative measure. Characterization of these states
can be used to select the “dangerous” fatigue state depending
upon the safety requirements of a particular use case.

In the observations related to driver’s fatigue detection,
the exerted force continue to decrease as the person gets
tired; ultimately reaching the minimum level, which resem-
bles fatigue state. In our experiments, we have also seen
somewhat similar force output. However, minimum force
output may not be sufficient to decide multiple fatigue states.
Besides, due to variations in the data for different persons,
it is not feasible to determine absolute amount of change in
force for different fatigue states. Moreover, the presence of
high level of noise due to twitching and tremor of the hand,
which may not be present in the driver’s grip force scenario,
make the statistical significance or change detection methods
infeasible.

Based on these observations, we enlist some of the re-
quirements for the proposed fatigue detection system.

• Online detection: The detection system cannot wait for
a stream of future data from the sensor to establish the
current fatigue state. Even though analyzing the whole
time-series data may accurately classify the fatigue state
change in the time domain, it might be too late to avert the
possibility of an accident. As the goal of the system is to
provide timely detection of fatigue state such that proactive
actions can be taken to avoid any accident, online detection
is a must requirement for such a system.

• Simplicity: Since the system needs to detect the current
fatigue state in a time-bounded manner, the sensor data
processing should be performed locally. As a result, the
algorithm should be simple enough to run on-board, even
for a low-cost robotic system, and provide output in semi-
real-time. If we choose a complex algorithm that needs to
be offloaded to run on a server, reliability may decrease
due to network latency and disconnection.

• Adaptivity and robustness: There is a significant varia-
tion of physical strength among different persons. More-
over, the system should not assume that the human worker
would always hold the object in a certain way. Rather, it
should be agnostic to the holding pattern of an individual
and the associated noise induced due to the holding pattern.
Instead of customizing the algorithm for each person, it
should be adaptive for any human co-worker, irrespective
of her physical strength, holding pattern, etc.

• Non-intrusive: The proposed system should not depend
on a body-attached sensor on the human being. It not
only causes discomfort, it totally defeats the purpose of
imitating the implicit communication. Moreover, once a
human co-worker gets fatigue and the task is yet to
complete, a second human co-worker may replace her. But
it becomes very difficult to quickly replace all the sensors
for the second co-worker. Thus, the data collection should
be non-intrusive.



IV. ONLINE FATIGUE DETECTION

Modeling muscle fatigue is difficult since it can vary
significantly from person-to-person. It depends on a person’s
physical ability, which is related to age, gender, BMI, etc.
Fig. 2 shows the response time of different person when they
lift a heavy object (same weight) and requested to indicate
when they feel it a bit heavier than the initial weight (state
1 fatigue).

Even though there are four states of fatigue, considering
the safety of our test subjects, we conducted experiments
only until the participant reaches the third fatigue state. Ana-
lyzing the collected data and the corresponding ground truth,
we found that, to effectively detect and classify three states
of fatigue with very high accuracy, some assumptions must
be made. These assumptions are based on the observations
of the data collection experiments.

1) Let FI be the average force output of the sensor during an
initial time window TI . We assume that during this time
window, the human being is in the non-fatigue state. Thus,
FI reflects the force exerted by the hand muscle during
the non-fatigue state. To avoid the effect of noise and
outliers, a robust statistic viz. median is used to calculate
FI . Let D be a set of n sensor samples collected in TI .
Reordering D such that d1 < d2 < d3 . . . dn−1 < dn,
then FI is given by

FI =


d(n+1)/2, when n is odd

d(n/2)+d(1+(n/2))

2 , when n is even.
(1)

2) Let δT denote the time to reach the first fatigue state,
i.e., the time difference between the start of the task
and having the first state of fatigue. Then, the next
state of fatigue is likely to occur after δT/2 time unit.
This assumption is based on the fact that during the
experiments, the next state of fatigue happens roughly
in the following δT time unit, as shown in Fig. 2, but
never before δT/2.

3) The transition from non-fatigue to fatigue state is not
instantaneous, rather it happens during a short period
of time. So a time window is required to analyze the
trend of the sensor data for online detection. Let Fc be
the current mean force observed during time window Tc.
Then the normalized decrease in force from the initial
average force (FI ) is denoted as,

δF =
FI − Fc
FI

× 100%.

It is assumed that a normalized decrease in force by more
than (δF >) 10% indicates a significant change; thus
indicating the chance of “potential” fatigue. This δF is
the cut-off threshold to find the window of interest in the
force sensor data that is subject to further analysis. We
chose this value to reduce false positives. This threshold
value is appropriate since all the marked fatigue states
from our dataset have more than 10% decrease in force.

However, this threshold can be modified to trade off
safety with accuracy.

Based on the above-mentioned assumptions, the algorithm
for online fatigue detection is designed as shown in Fig. 3.
The algorithm starts at the beginning of a human-robot
collaborative task, which is triggered by a non-zero sensor
reading. The algorithm terminates when the sensor reading
is zero, indicating end/abortion of the task. The pseudo-code
of the algorithm is described in the following.

Algorithm 1: DeFatigue: Algorithm for online non-
intrusive fatigue detection.

Read FI using Eq. 1;
cut off = 10;
while (sensor reading > 0) do

Select time window Tc;
while (!Tc.full()) do

Fill Tc with force sensor reading;

Calculate δF for time window Tc;
if (δF > cut off) then

Mark starting of potential fatigue;
Select time Window of Interest, TWOI ;
While TWOI is not full, fill TWOI with δF ;
if Slope(TWOI) > 0) then

Mark next fatigue state;

Calculate δT ;
Wait for δT/2 time;

Undo marked potential fatigue;

Algorithm 2: Algorithm for finding slope of TWOI .

Let δF1,δF2. . . δFn denote the data points in TWOI ;
Get the midpoint of TWOI as δFm;

Calculate M1 as M1 =
∑m−1

i=0 δFi

m ;
Calculate M2 as M2 =

∑n
i=m δFi

m ;
Calculate δM as (M2 −M1) ;
return δM

When the normalized force change (δF ) is more than the
cut-off threshold, a window of interest (WOI) opens up. The
slope of the force data within this WOI determines whether
a fatigue state transition has occurred or not. A decreasing
trend in force during the WOI provides a clear indication
of fatigue. If the data-points inside WOI is represented as a
line, then a positive slope in the line denotes a decreasing
trend in force. This is because WOI is filled with the
normalized change dF, which becomes positive when force
is decreasing. However, to make the algorithm suitable to run
on an embedded system like Arduino, the slope of the line is
determined by a computationally simple method, described
below.

V. EXPERIMENTAL SETUP

To conduct the experiment of fatigue detection while
maintaining safety and without the burden of additional



Fig. 2: Variations in time across the test subjects to reach up
to the 3rd fatigue state.
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Fig. 3: Flow diagram of the online fatigue detection.

cost and complexity, we have resorted to using a simple
and realistic technique to model a robot’s behavior in our
experiment. During the data collection process, a force sensor
is mounted on the corner of an oval-shaped, rigid, wooden
table and connected to an Arduino board. It is used to
simulate a humanoid robot’s hand. Putting a box on the
sensor simulates a robotic hand holding the box and the
sensor on the corner of the table simulates a sensor on the
palm of a robotic hand. The weight of a heavy object held
by the robot falls on the sensor, which measures the change
in force with respect to time. It is assumed that the robot
is strong enough to hold the box indefinitely, which closely
relates to the properties of a fixed, rigid table.

A. Apparatus

As mentioned earlier, the setup consists of a force sensor.
The sensor has a robust polymer thick film (PTF) that exhibit
a decrease in resistance with the increase of applied force.
A voltage divider is used to convert resistance output to
voltage output, which has a larger scale. This means that
the voltage output of the sensor is increased with increasing
force. The sensor is connected to an Arduino board to collect
the force output data along with timestamps. During initial
data collection period, the Arduino board is connected to a
personal computer to store the data. During online detection,
the detection algorithm runs on the Arduino board itself. A
heavy rigid box, used as a payload, is held by the participants
from one end whereas the other end is rested on the sensor.
We use an FSR-402 as the force sensor that has a sensitivity
of 0.2 N to 20 N. It has a circular sensing region with a
diameter of 12 mm, which is suitable to be put on a humanoid
robot’s hand. However, beyond the outer ring of the sensing

(a) sensor (b) data collection

Fig. 4: Force sensor and Arduino based experimental setup
and data collection with test subjects.

region, there is a protective layer which prevents any object
larger than the sensing region to give accurate output. Also,
the sensing region resides at a little lower height than the
protective layer. So, for a rigid box with a flat base, which
is larger than the sensor, the weight does not fall on the
sensing region completely. To overcome this, a small, plastic,
3D-printed cylinder with a small base and large top is used
as shown in Fig. 4a. Because of this setup, the weight of box
falls over the larger flat top of the cylinder. Even though the
total weight of the box is not reflected by the sensor output,
the change in force on the sensor is well measurable, and
that is what we are interested in.

B. Methodology

During the initial data collection phase, the participants
are asked to hold the box from one end, roughly at the same
initial angle, it made with the table as shown in Fig. 4b.
Before that, the participants are informed about the fatigue
states according to the observations in Table 1. They are
requested to make a mental scale of the states and to speak
out when he/she is feeling the next state of fatigue. The
timestamps are manually marked to build the ground truth
data. No visual feedback of the force sensor output was
shown to the participants to avoid bias on ground truth.
Keeping in mind the safety of the participants, the data
collection experiments are conducted until the participants
reach state III fatigue only. Participants are selected from a
wide age group of 24 to 40 years old. Both male and female
participants are experimented with. To introduce further
variation in the physical strength of the participants, persons
with varying BMI are chosen. Also, multiple experiments
are conducted for the same participant at different times to
capture the temporal variation of physical strength.

VI. EVALUATION

As mentioned earlier, our goal is to detect the fatigue
state transition on-the-go such that proactive measures can
be taken in real-time. Thus the accuracy of detection along
with timeliness is a requirement. So, at first, let us evaluate
the accuracy of DeFatigue. As our algorithm use certain
parameters (as mentioned in Section IV), we also evaluate
how these parameters are chosen that withhold the good
performance. Fig. 5a and 5b show a sample force sensor
output and the corresponding normalized change in force,
respectively. Fig. 5b also shows the detected fatigue states
by DeFatigue as indicated by a window of blue lines. These
lines denote the starting and ending points of WOI for which
the potential fatigue is marked as positive. The vertical red
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Fig. 5: Detected fatigue indicated by a window (pair of blue
lines) and the ground truth (indicated by the red line).

lines denote the ground truth provided by the subject. It
is clear from this figure that the fatigue state transition is
accurately indicated by DeFatigue as the ground truth falls
within (or within close proximity of) the estimated window
of transition. We report the results for all the subjects in
terms of false positives and false negatives. A false positive is
marked when a WOI is given positive fatigue by the detection
algorithm even though ground truth reported by the subject
is not there. On the other hand, when the system misses a
state transition, it is marked as false negative. To report the
overall accuracy of the algorithm based on the data collected
from the 18 subjects, we use the following formula.

A =
S − (FP + FN )

S
× 100%, (2)

where S, FP , and FN are the total number of fatigue
states, false positives, and false negatives, respectively. For
18 subjects, the total no. of fatigue states to be detected is
18× 3 = 54. So the overall accuracy is

A =
54− (6 + 2)

54
× 100% = 85.18%.

We have compared DeFatigue with the methodology de-
scribed by Chieh et al. [10] which used CUSUM algorithm
to detect significant mean changes in the force sensor data.
Even though the described method works offline, we have
converted the algorithm to detect changes online. The modi-
fied CUSUM based change detection algorithm buffers data
in a time window that is of the same size of the window used
by DeFatigue. Then the algorithm analyzes the window and
reports if there is a significant change. We observe that the
algorithm by Chieh et al. is very sensitive to perturbation and
thus reports more false positives than DeFatigue, as shown
in Fig. 6a for the same subject shown in Fig. 5. The poor
performance of Chieh et al.’s method is attributed to the fact
that it is not catered for noisy data. In case of driver’s fatigue
detection, hand grip force data contains lesser noise and
there is high similarity among different subjects. Whereas in
robot co-worker scenario, the sensor data incorporates noise
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Fig. 6: Sample detection points (dotted blue lines) using
Chieh et al.’s method and ground truth (red lines).

from hand movements and varies significantly for different
subjects.

Fatigue not being an instantaneous event, there is a chance
of falsely detecting the after-effects of a fatigue state transi-
tion as another state transition. As seen in Fig. 6, the detected
fatigue states by Chieh et al.’s algorithm are very close to
each other and some of them are actually the after-effects
of the previous fatigue state transition. We have already
discussed in section IV that to avoid false positives of the
after-effects, the algorithm should wait for δT/2 time unit
before checking for next fatigue state. Thus, we introduce
the waiting mechanism in Chieh et al.’s method and it
significantly reduces the rate of false positives. We call it
SKIP CUSUM. A sample comparison of the same subject
is shown in Fig. 6b. A detailed comparison of the three
methods for all the 18 subjects is shown in Fig. 7. Note that
due to high sensitivity to mean change, both CUSUM and
SKIP CUSUM reports zero false negative. However, CUSUM
reports a large number of false positives. SKIP CUSUM
performs better than CUSUM, but DeFatigue outperforms
both in terms of accuracy per subjects. SKIP CUSUM reports
a total of 33 false positives for the entire dataset, which
results in 38.89% accuracy using Eq. 2.

In our experiment, we have observed that fatigue being
both physiological and psychological state, the subject may
not report fatigue just as it happened. By visually analyzing
the ground truth and the trend in force sensor data, we found
that sometimes the subjects reported fatigue a few seconds
after it has actually happened. So the reported ground truth
may not exactly fall inside the positive WOI reported by
the algorithm, but sometimes it follows the window closely.
So, apart from reporting accuracy in terms of the number of
false positives and false negatives, we have also evaluated
the accuracy with respect to the time difference between the
ground truth and the positive WOI. The error of reporting



Fig. 7: Fatigue detection using Chieh et al.’s method v/s
DeFatigue.

Fig. 8: Detection error with respect to time.

fatigue by the algorithm is shown in Fig. 8. In the figure,
“Error F1” signifies the deviation of the detected window of
first fatigue state from the ground truth, “Error F2” is for
the second fatigue state, and so on. When the ground truth
falls within the detected window, the deviation is zero; so
the corresponding error is not shown in the figure.

We have selected various parameters like the size of the
initial time window (TI ), cut-off threshold, size of WOI,
etc., based on our observations to maximize safety. These
parameters are correlated with the nature of the task, i.e.,
how long the task completion should take, what is the shape
and weight of the jointly manipulated object, etc. However,
we assume by collecting a little amount of data for a task,
the robot can learn about the correlation and hence adjust the
thresholds dynamically. For the results shown in Table II, we
use a box weighting 20 kg and select an initial time window
of 10 s, cut-off threshold 10%, and size of WOI as 5 s.

We evaluate the detection accuracy by varying the param-
eters as shown in Table II. It is evident that increasing the
cut-off threshold while keeping the size of WOI fixed, results
in lesser number of false positive. This is because, with a
larger cut-off threshold, the system becomes lesser sensitive
to force change. The system detects a state transition only
when there is a significantly larger change in force, which of
course results from a fatigue state transition. However, with
a larger cut-off threshold, the number of false negative also
starts to increase. A larger cut-off means, there is a chance of
missing out a fatigued state for physically stronger persons
whose force change is lesser. Similarly, increasing the size of
WOI reduces the number of false positives, as a larger WOI
clearly captures the decreasing force trend. However, having
a large WOI means the algorithm has to wait for a long time
before giving the alert, which is not desirable. Initially, by
collecting data, the robot can produce such a table, and select
the row which is optimal for the selected task. The more the
robot learns, more accurately it can fine-tune the parameters.

TABLE II: Accuracy of DeFatigue for varying parameters.

Cut-off(%) WOI(s) False False Accuracy
Positives Negatives (%)

6 5 12 1 77.8
8 5 8 2 81.5
10 5 6 2 85.3
12 5 7 3 81.5
10 3 12 2 74.1
10 7 9 2 79.7
10 9 8 2 81.5
10 12 6 3 83.3

However, merely selecting the row with the highest accuracy
may not be suitable for this. For safety considerations, a false
negative is more undesirable than a false positive. So a row
with the minimal weighted average of false positive and false
negative is to be selected, where the weight of false negative
is more and can be selected based on the safety requirements.
In fact, the traditional concept of false positive may not be
applicable here. The online algorithm is designed in such a
way that any supposedly false positive w.r.t ground truth is
actually marked as an early warning. As seen in a sample
detection plot in Fig. 9, there exists a false positive between
the 2nd and the 3rd states of fatigue. However, the online
algorithm will mark the false positive window as the next
fatigue next (3rd fatigue state in this case). By looking at the
total data, we can see that marking of false positive leads to
an early marking of the 3rd state of fatigue. Even though this
reduces the productivity of the setup, it does not compromise
the safety of the system.

The time difference between the early-marked fatigue state
and the ground truth is another measure of accuracy. We also
evaluate DeFatigue based on this time deviation measure. It
is to be noted that as the time to reach fatigue states varies for
different subjects, the accuracy measured by time deviation
must be normalized. For example, a smaller deviation may be
critical for a subject with relatively quicker to reach fatigue,
while the same deviation may not be critical for a subject
with much larger time to reach fatigue. So to normalize, we
calculate accuracy using the following formula for all the
subjects and then take the average as the overall accuracy.
Let, F1, F2, F3 denote the time to reach the first, second, and
third fatigue states, respectively and Et1, Et2, Et3 denote
the respective time deviation by DeFatigue. Then timing
accuracy for an individual subject is given by,

A′ =
(F1 + F2 + F3)− (Et1 + Et2 + Et3)

(F1 + F2 + F3)
× 100%.

Using this formula, we calculate time accuracy for all the
18 subjects as shown in Table III. Based on these accuracy
figures, we calculate an average accuracy of all the subjects
to be 88.83%. Also, the total time deviation being 221
seconds, time deviation from ground truth per fatigue state
is calculated to be 4.09 seconds.

VII. CONCLUSION

In this article, we develop DeFatigue, a non-intrusive,
online method to detect multiple fatigue states of a human



TABLE III: Accuracy of DeFatigue in terms of deviation (in
seconds) of the detection window from the ground truth.

Subject Et1+Et2+Et3 F1+F2+F3 Accuracy (%)
1 12 82 85.4
2 20 63 68.3
3 6 166 96.4
4 12 86 86.1
5 8 96 91.7
6 9 129 93
7 14 115 88.6
8 16 138 88.4
9 19 221 91.4
10 6 121 95
11 16 133 87.9
12 6 63 90.1
13 17 216 92.1
14 7 117 94
15 4 153 97.3
16 18 86 79
17 21 167 87.4
18 10 76 86.8
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Fig. 9: False positive - the fatigue detection is indicated by
a window (marked by the blue lines) and actual fatigue state
transition (the ground truth) is indicated by the red line.

worker by a robot co-worker when they jointly carry a
heavy object. Non-intrusive refers to no sensor attachment
on the human body either internally or externally. The goal
is to assess the fatigue state of the human in a timely and
accurate manner without any explicit communication from
the human such that proactive measures can be taken to avoid
an accident. This implicit communication not only enriches
human’s experience with a robot co-worker, it also assures
a higher level of safety. We experiment with 18 subjects,
where a force sensor mounted on the corner of a table-top
mimics a robotic hand with a force sensor. Based on the
experiments, we observed that force sensor value decreases
as the subject gets fatigue. However, the change in force
varies significantly for different subjects depending upon
their physical strength. Moreover, classifying three states
of fatigue instead of one makes it even more challenging.
In spite of these challenges, we found that a variation of
force change using a moving window based averaging can
be utilized for detection of fatigue states with high accuracy,
even in the presence of noise from perturbation of hand.
Future research direction can include discriminating noise
generated from the robot’s mobility. Even though it is not

a perfect system, the three state detection provides enough
time to prepare for safety measures. Moreover, the deviation
of detection time as compared to the ground truth is tolerable
and in fact is gain compared to intrusive sensing, which is
not suitable for seamless human-robot interaction.
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